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ABSTRACT

A multiphase flowmetering technique based on
characterisation, classification and identification of
pressure signals has been developed and tested in oil­
water-air slug flow. The technique extracts a set of
stochastic features from pressure signals and relates these
to water-cut and liquid and gas flowrate by training back­
propagation neural networks with calibration samples.
Laboratory tests in 3 inch and 4 inch horizontal three­
phase flow over a wide range of flow conditions have
shown a measurement accuracy of +/- 10% for liquid-gas
flowrates and +/- 5% for water-cuts.

INTRODUCTION

Significant pressure and phase concentration fluctuations
are known to occur in multiphase flows. These can be
detected readily by common transducers which can
operate with a matching frequency response. A number
of qualitative studies of stochastic methods are
encountered in the literature in which pressure and void­
fraction waveforms were applied for flow-reginle
discrimination 1-5.

Recentiy, a software based technique6-9 (named ESMER)
was developed at Imperial College for the identification of
individual phase flowrates from pressure fluctuation
characteristics in water-air flow. Figure 1 shows the
broad principles of the technique. A set of stochastic
features, which are uniquely related to water and air
flowrate, are extracted from absolute and differential
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pressure signals (tappings were configured axially and
radially). A set of experimental data comprising
superficial velocities of the individual phases and the
related feature sets are saved in a calibration database.
The calibration database is then applied in an on-line flow
rate measurement system which works by identifying the
best match between the measured feature set and those in
the calibration database.

The ESMER technique relies on the creation of distinct
and reproducible flow patterns at given liquid and gas
flowrates. It is well known that distinct flow patterns are
also created in oil-water-gas flow around given ranges of
flowrates and phase mixtures. A number of tests
conducted on 3 and 4 inch diameter pipelines have shown
that certain features are more sensitive to water-cut.
Features were found to exhibit different degrees of
sensitivity to water-cut and liquid-gas flowrate. This is a
promising indication of the possibility of the extension of
ESMER technique to three-phase flow measurement.
However, due to the greater complexity of three-phase
flow patterns, the feature sets and pattern recognition
techniques must be more finely selected and tuned. This
paper presents the extension of the ESMER technique for
three-phase flowrate measurement.

THEORETICAL BACKGROUND

In-situ Calibration

Features derived from pressure signals have been found to
be affected by a number of variables. These can be
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categorised as follows:

Hydrodynamic quantities: flowrate, density ratio,
physical properties such as viscosity and surface
tension;
Flow line geometry: upstream conditions, diameter,
orientation;
Instrumentation: sensor location and configuration,
signal acquisition parameters such as sampling
frequency and period.

In the present series of laboratory tests, all variables
were kept constant with the exception of oil, water and
gas flowrates.

Feature Selection

Considering oil and water to fonn a liquid phase having
average mixture physical properties, measurement
variables can be defined as water-cut and liquid and gas
flowrates. The first task is to distinguish between
water-cut sensitive features and flowrate sensitive
features.

Water-cut sensitive features

Water-cut sensitive features are strongly responsive to
water-cuts but little affected by liquid-gas flowrates.
Feature sets obtained under a range of liquid and gas
flowrates at a given water-cut should group closely in the
multi-dimensional feature space while distancing
themselves from those at other water-cuts. Calibration
measurements should be made for a number of flowrates
at each water-cut.

- LiqUid and gas flowrate sensitive features

Flowrate sensitive features are strongly responsive to
flowrates but little affected by water-cuts. A calibration
database consisting of the flowrate sensitive features and
superficial liquid and gas velocities can be constructed
from data obtained at a number of grid points in the
superficial liquid-gas velocity map regardless of
water-cuts. The database can be used for flowrate
identification irrespective of water-cut.

Pattern Recognition

The back-propagation neural network has been
successfully applied in solving many pattern recognition
problems which had proven difficult for traditional
methods lO-15. To enhance the pattern recognition
capability, an identification scheme (Figure 2) was
proposed where the back-propagation neural network was
applied for learning the mapping function between
features and the measurement variables.
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The network comprises an input layer (input vector),
hidden layers and an output layer (output vector). Units
(neurons) in these layers are interconnected with weights.
The number of hidden layers and the neuron number in
each layers are the parameters required for the network
architecture. In our application, the input vector is
equivalent to a set of stochastic features and output vector
to water-cut or liquid and gas flowrate.

The network leams the mapping function by entering
associated input and target output values from calibration
data set repeatedly, making changes in its weights in a
direction to minimise the sum of squared errors between
its prediction outputs and target outputs. This procedure
is tenned network training. The resulting network model
is tested by feeding samples which have not been used in
the preceding training process. If similar accuracy is
achieved, the network is considered to possess the
capability to generalise and it can then be used for
measurement.

LABORATORY TESTS

Experiments

Experiments were conducted in 3 inch and 4 inch
horizontal multiphase pipelines. Diesel oil, water and air
were employed as the component fluids. Pressure
transducers, comprising absolute, axial differential and
radial differential tappings were mounted in the flowlines
with an upstream straight length of around 6m for the
3 inch pipeline and of around 15m for the 4 inch pipeline.

Pressure signals were collected at a sampling frequency
of 40Hz and a sampling period of 102.4S, comprising
4096 points per sample record. Water-cut levels
employed in the series were 0, 10, 20, 35, 50 and 75%,
and liquid and air superficial velocities ranges were
0.36 - 1.8 mls and 0.88 - 4.9 mls in the 3 inch pipeline
and 0.30 - 1.1 mls and 1.0 - 2.9 mls in the 4 inch
pipeline, respectively. Visual observation confinned that
the flow pattern was in the slug flow regime.
48 measurements were taken at each water-cut
comprising different combinations of liquid and air
flowrates.

Water-cut Measurement

Radial differential pressure signals were used to derive
linear prediction coefficients16. In this study, the signal is
modelled as a linear combination of its past four values. It
was found that the linear prediction coefficients (ai, a2,
a3, a4) and the residual error coefficient (Ep) were
sensitive to water-cuts. Figure 3 shows a data set
including a number of water-cut classes in the (Ep, a2)
two-dimensional feature space. Samples belonging to
each water-cut were seen to be clustered closely.
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CONCLUSIONS

where Vm = measured superficial velocity; va = actual
superficial velocity; and vmax' Vmin = maximum and
minimum actual superficial velocity, respectively.

randomly from 0%, 10%,20%,50% and 75%. Figures 7
and 8 show the measurement accuracy on 3 inch and
4 inch flowlines, respectively. Within the range of tests,
errors of both liquid and gas were confined within
+/- 10%. The error was calCulated as follows:

...(2)8 =(vm - va) X 100% / (vmax - Vmin )

2. A group of stochastic features sensitive to
water-cuts and liquid-gas flowrates were derived
from pressure signals obtained in the slug flow
regime. The back-propagation neural network was
employed for establishing the relationship between
the feature sets and the corresponding water-cuts
and liquid-gas flowrates .

1. A software based multiphase flowrate and water-cut
measurement technique is developed that utilises
ordinary pressure transducers which can be
installed and maintained at low cost. The technique
was tested in the laboratory under horizontal slug
flow conditions.

...(1)

LetAP (t) represent an absolute pressure signal, then a
temporal differential signal X(t,to) can be obtained by,

The network was designed to comprise an input layer
with 5 neurons, features al,a2,a3,a4,Ep; a hidden layer
with 8 neurons; and an output layer with a single neuron,
the water-cut. The calibration data set comprised
measurement samples at water-cut levels of 0%, 10%,
35%, and 50% with each water-cut having
24 combinations of flowrates. The network was trained
successfully.

Tests were conducted with a data set compnsmg 24
samples at each of 0%, 10%, 20%, 35%, 50%
water-cuts. These shows that +/-5% accuracy level can
be achieved (Figure 4). The high measurement accuracy
obtained for 20% water-cut suggests that water-cuts
which are outside the calibration data set can be
identified.

Liquid and Gas Flowrate Measurement

(i) Standard deviation ofa temporal differential signal

The following flowrate sensitive features were derived
from absolute and axial differential pressure signals.

where to = the time lag.

We calculated the standard deviation (Sci) of X(t,to)
and found that within a certain range of to' Sd was a
flowrate sensitive feature. Figure 5 shows the contour
maps of Sd (to = O.IS) for 35% and 75% water-cuts. In
this study four features were derived for to = 0.1, 0.2,
0.3 and 0.4 second.

3. With in-situ calibration, liquid-gas flowrates could
be measured with +/- 10% accuracy and water-cuts
could be identified with +/- 5% accuracy.

4. Further three phase data are required to
generalise the conclusions reached from this specific
data set. This may require extracting more features
and replacing the superficial co-ordinates by
dimensionless variables.

(ii) Fraction oftime above an amplitude threshold
NOMENCLATURE

From the axial differential pressure signal, we calculated
the fraction of time Tc while the amplitude of the signal
remained above a given threshold level, C. Figure 6
shows that the feature Tc at C = 5 mbar is very sensitive
to the liquid flowrate and two different water-cuts exhibit
similar feature maps. Two features were derived for
C =5 and 10 mbar.

The input values to the network were the six features
described earlier and the target outputs were chosen as
the superficial liquid and gas velocities. A single hidden
layer with 8 neurons was employed.

Tests were conducted with 3 inch and 4 inch data,
respectively. For each pipeline diameter, a training data
set was created from 48 measurement samples obtained
at 35% water-cut. The testing data set for each case
contained 48 samples whose water-cuts were selected

al,a2,a3,a4 = linear prediction coefficients
C = amplitude threshold level
Ck = coefficient ofkurtosis
Cs = coefficient of skewness
Ep = residual error coefficient in the linear prediction
Sd =standard deviation
Tc = fraction oftime above an amplitude threshold
to = time lag ofthe temporal differential signal
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